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Introduction. In solving a system of algebraic equations it is well known that 
the problem is much simpler if the equations are linear. In solving a system of 
differential equations, one usually does not really care if the equations are linear 
or not, even though a simplification is possible in the linear case; namely by ob- 
serving that in a predictor-corrector method the corrector can be solved explicitly 
for the unknown without predicting. This simplification effectively iterates the 
corrector to convergence with just a single computation, giving better accuracy 
with less computing. 

It frequently happens, however, that a system of nonlinear equations gives rise 
to certain linearities. Two such instances, one of considerable importance, are 
considered here. 

The first instance occurs whenever variational equations are solved along with 
the nonlinear differential equations. Variational equations are always linear. As 
will be shown, considerable saving in computing and storage is possible while at 
the same time achieving an increase in accuracy. 

The second instance, considered in the Appendix, occurs whenever a higher 
order equation is reduced to a system of first-order equations. The substitution 
equations are not only linear but uncoupled. Again an increase in accuracy may 
be possible with less computing and storage. 

Solving Variational Equations. Variational equations may come from various 
kinds of equations. A somewhat special type will be considered first in order to 
illustrate the method. 

Let the differential equations, nonlinear and hereafter referred to as the primary 
equations, be as follows: 

I Y' = F(x, Y, Y'), 

where Y and F are vectors of the same dimension and where prime refers to differ- 
entiation with respect to the independent variable x. (Note that the free flight 
equations of motion are of the preceding form with dimension 3 [1], [2].) The par- 
ticular solution Y will depend on certain initial conditions and on possibly certain 
parameters which occur in the function F. Let Ok (k = 1, - , n) denote either an 
initial value or one of the differential equation parameters. The variational equa- 
tions with respect to Ok will then be as follows: 

Yfk = aF yYk + aFy Yak + aFk' 

Here aF/aY is a matrix whose i, jth component is aFi/aYj, the partial of the ith 
component of F with respect to the jth component of Y, and similarly for aF/lY'. 
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The initial values are determined by differentiating the initial values of Y with 
respect to Ok and in general will be zero if Ok is a differential equation parameter 
(i.e., a parameter occurring in the function F). On the other hand, if Ok denotes 
an initial value, then not all of the initial conditions on Ypk will be zero, but normally 
aF/oak will be the null vector. The solution Yfk then gives information about the 
changes in Y if the parameter fk is changed. 

The coefficient matrices aF/&Y and aF/lY' are of course evaluated in terms of 
corresponding solutions of the primary equations, and likewise the vector aF/0a1k. 
The variational equations are solved simultaneously with the nonlinear primary 
equations and it is often the case that n is quite large. Note however that the solu- 
tion of the primary equations is independent of the variational equations. 

Denote Yp by V (fi = Al, -.. , An,) and aF/3Y' by A(x), also aF/3Y by B(x) 
and WF/&la by C(x). Let V' = X. The system of variational equations may then be 
written as: 

X' = A(x)X + B(x)V + C(x), V' = X. 

Assume the integration has been started and another step is to be taken by, for 
example, the Adams-Moulton fifth order formula [5]. The primary equations may 
be integrated to the (n + 1 )st step in the usual manner. Then the implicit corrector 
formula gives: 

Xn+1 = Xn + h [251Xn+1 + 646Xn' - 264X_-1 + 106X - 19Xn_3] 

251h = Xn + 20 [An+l Xn+l + Bn+1 Vn+l] 

+ h [251Cn+l + 646Xn' - 264Xn-1 + 106Xn- - 19Xn_3] 

251h 
= 720 [An+1 Xn+1 + Bn+i Vn+i] + X) 

where 

X = Xn + 
h 

[251Cn+l + 646Xn' - 264Xn-1 + 106Xn, - 19X'-3] 
720nnn 

and 

Vn+= Vn + 
h 

[251Vn+1 + 646Vn' -264V'-1 + 106V'-- - 19Vn-3] 

251h 
2--Xn+1 + fV, 

where 

h 
n= V + 720 [646Vn' -264Vn-i + 106Vn2- 19Vn_3]. 

The quantities X and V are known because the integration has proceeded to the 
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nth step. Substituting for V'+' in the first equation and solving for X'+' gives: 

F251h I' 251h ]'/251h 
Xn?1 =[I-~ 720 720 B+i)j ( 720 Bn+1v 

Here I is an identity matrix of appropriate size and the brackets enclose a matrix 
to be inverted. 

Two observations concerning this matrix are of importance. Firsts the matrix 
depends only on the solution of the primary equations and not on which parameter 
is perturbed. Thus the matrix is inverted once each time step; it is of order equal to 
the dimension of Y; and the same matrix is used for each of the parameters pi3. 
Secondly, as h approaches zero, the matrix approaches the identity matrix, and 
thus if h is not too large the matrix inversion is well conditioned. 

Note also that the storage of X' v and V'_4, which would be required for a 
fifth order predictor formula for Xn+1 and Vn+1 is not required here, thus effecting 
a saving in storage as well as computation in order to get a more accurate value; 
more accurate since the (effectively) iterated Adams-Moulton value is obtained. 

Variational equations are generally better behaved than the primary equations 
and usually need not satisfy as stringent accuracy requirements. Thus a further 
storage savings can be effected by integrating the variational equations with lower 
order formulas than the primary equations. 

The preceding scheme, using the fifth order Adams-Moulton formulas, has been 
employed in an orbit determination program wherein the primary equations are 
the second order nonlinear differential equations of motion [1], [2] X = -,X/r3 + F 
where: 

;s = gravitational constant (GM) of the earth, 
r = l X i = (X2 + y2 + Z2)/2, 
F = F1 + F2 + F3 + F4 = perturbative acceleration due to asphericity of the 

earth, extraterrestrial gravitational forces, atmospheric drag and low thrust re- 
spectively. 

The variational equations for 60 parameters have been integrated simultane- 
ously with the motion equations and since each parameter gives rise to 3 differen- 
tial equations (one for each component of satellite position) the total system con- 
sisted of 183 differential equations. The motion equations (3 in number) were 
integrated with a sixth order Gauss-Jackson package which requires 25 storage 
cells per equation. The remaining variational equations (180 in number) were inte- 
grated as described previously and required only 12 storage cells per equation. 
This configuration has resulted in accuracies comparable to those achieved when 
the entire 183 equations were integrated with the Gauss-Jackson package: and 
has noticeably reduced the machine time required for such integrations. 

So called "delta tests" were used to test the accuracy. These tests consisted of the follow- 
ing steps: 

(1) integrating a reference trajectory and the variational equations (in both modes, i.e., 
sixth order Gauss-Jackson and the formulas developed for fifth order Adams-Moulton) for two 
days (approximately 2900 steps); 

(2) perturbing, one at a time, the parameters for which variational equations were in- 
tegrated in (1) and integrating a trajectory for the same period of time; 

(3) differencing the trajectories obtained in (1) and (2) to determine the prediction accu- 
racy of the partial derivatives generated in (1). 
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The stability of this procedure is that of the iterated Adams-Moulton method 
(see [41). 

A More General System of Variational Equations. The solution of variational 
equations when the equations of motion include first order as well as second order 
equations will now be considered. 

Let the primary equations be: 

Y = F(x, X, Y, Y'), 

X' = G(x, X, Y), 

where Y is a j-vector and X is a k-vector. The function G could be allowed to depend 
also on Y', but for simplicity this is not considered. (Note the equations of motion 
for powered flight are of the above form [3] with j = k - 3.) Let 

F A F B a C aG D aG E. ay ay,' ax ' axa 
A, B, C, D, and E are matrices with orders: A, j X j; B, j X j; C, j X k; D, k X k; 
E, k X j. The variational equations are: 

Yp" = AY# + BY#' + CXa + , 

aa3 
X$' = DX# + EY - + . 

Let 
Y# y. X# = X, Y -U 

Then, proceeding as before, using the fourth order Adams-Moulton corrector 
formula: 

Uni+ = {Ij - B- (3h) A - C (Ik - D) E} 

X Rn +8[AP. + C (1- D) (Qn + EPn)]} 

]%+1 = 3k Un+1 + Pn 8 

( h )-1 (3h) fnl= (k - D) (8 EYn?l ? Q 

where 
- h 

Pn = Yn + -- (19Un -5Un-1 + Un-2, 24 

Rn = Un + F \19 Un 5 Un-, + Un-2 + 9a 

24 - 9 ) 

x 4 n 
4# 
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and the matrices A, B, C, D, E, are evaluated using the solution of the primary 
equations at the (n + 1 )st time step. Ij is the jth order identity, and Ik is the kth 
order identity. Note that two matrix inversions are involved at each time step. 
However, again the inversions are the same for all values of the parameter A, and 
again each is well conditioned if the step size h is not too large. 

Conclusion. It has been shown in this paper that variational equations may be 
solved in a much more practical way by taking advantage of their linear nature. 

Appendix-Solving Second Order Equations. Let the equations to be solved 
be of the form: 

y" = f(x, y, y', w), 

w = g(x, y, y', w), 

where y and f are vectors of order p, and w and g are vectors of order q, and the 
prime denotes differentiation with respect to the independent variable x. To use 
the Adams-Moulton procedure the system is reduced to a first order system by 
letting y' = v. Thus: 

v= f(x, y V, w), 

y =v, 

w= g(x, y, v, w). 

The usual procedure is to compute predicted values of Vn?i, yn+1, and wn+1, then 
use these predicted values to evaluate v' +1, y +1, and w' ?1. Then corrected values 
Of vn? X Yn1 X and Wna? are computed and these are used to re-evaluate V4+1 yn+1 
and w'+1. Note however that as soon as Vn?i is predicted, the first evaluation of 
yn~l is already accomplished. This permits the immediate evaluation of the cor- 
rected value of yn+i, skipping the evaluation of the predicted value. This corrected 
value of Ynoi can then be used in the first of the two derivative evaluations instead 
of the bypassed predicted value. Since the corrected value is more accurate than 
the predicted value this would normally lead to a more accurate derivative evalua- 
tion with less computing and less storage of data. The saving in storage of data 
occurs because Y'-k+1, where k is the order of the method, used in computing the 
predicted value of Yn+1 is not needed in computing the corrected value. 

These observations could be generalized to higher order equations. For example, 
if z"' is given, the first computed value of Zn+1 could be what is ordinarily the second 
corrected value. 

The proposed scheme has been employed in a program using fourth order Adams- 
Moulton formulas. In particular it has been tested on single equations of the form 

y" = f(x, yj y'). 

The accuracy obtained is comparable to that of the standard procedure. In 
some cases it is possible to see that a slight loss in accuracy will occur. For example, 
the equation y" = (y + y') has as solution y = eX. The truncation error is then 
such that the predicted values will be too small and the corrected values too large. 
Using the predicted value to evaluate y"'+? will make that value too small, but this 
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will tend to cancel the truncation error in the corrected value of y'n+l . The proposed 
scheme will not benefit from this cancellation. 

Note in particular that if the equation is of the form y" = f(x, y'), then identical 
results in the two schemes will be achieved. In any case, savings in storage of data 
and computation do occur. 

The idea expressed in the Appendix, if not the details, has been noted before 
(see [6]). 

Aerospace Corporation 
Los Angeles, California 90045 

1. S. D. CONTE, "The computation of satellite orbit trajectories," Advances in Computers, 
Vol. 3, Academic Press, New York, 1962. MR 28, S 2906. 

2. R. J. MERCER, et al, Trace, Aerospace Orbit Determination Program, Report No. TDR- 
269 (4110-04)-i, Aerospace Corp., Nov. 1964 (AD 454 404). 

3. C. S. CHRISTENSEN, A. R. JACOBSEN & R. J. MERCER, Trace-C Powered Flight Trajectory 
Determination Program, Report No. TOR-469 (5352)-1, Aerospace Corp., May 1965. 

4. R. R. BROWN, J. D. RILEY & M. M. BENNETT, "Stability properties of Adams-Moulton 
type methods," Math. Comp., v. 19 1965, pp. 90-96. MR 31 #2829. 

5. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New 
York, 1962. MR 24 #B1772. 

6. W. E. MILNE, Numerical Solution of Differential Equations, Wiley, New York; Chapman 
& Hall, London, 1953, p. 82. MR 16, 864. 


